Rates of Convergence for a Bayesian Level Set Estimation
نویسندگان
چکیده
منابع مشابه
Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملConvergence Rates in Nonparametric Bayesian Density Estimation
We consider Bayesian density estimation for compactly supported densities using Bernstein mixtures of beta-densities equipped with a Dirichlet prior on the distribution function. We derive the rate of convergence for α-smooth densities for 0 < α ≤ 2 and show that a faster rate of convergence can be obtained by using fewer terms in the mixtures than proposed before. The Bayesian procedure adapts...
متن کاملUniform Convergence Rates for Kernel Density Estimation
Kernel density estimation (KDE) is a popular nonparametric density estimation method. We (1) derive finite-sample high-probability density estimation bounds for multivariate KDE under mild density assumptions which hold uniformly in x ∈ R and bandwidth matrices. We apply these results to (2) mode, (3) density level set, and (4) class probability estimation and attain optimal rates up to logarit...
متن کاملConvergence Rates for Differentially Private Statistical Estimation
Differential privacy is a cryptographically-motivated definition of privacy which has gained significant attention over the past few years. Differentially private solutions enforce privacy by adding random noise to a function computed over the data, and the challenge in designing such algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size tradeoff. This w...
متن کاملConvergence Rates for Bayesian Density Estimation of Infinite-dimensional Exponential Families
We study the rate of convergence of posterior distributions in density estimation problems for log-densities in periodic Sobolev classes characterized by a smoothness parameter p. The posterior expected density provides a nonparametric estimation procedure attaining the optimal minimax rate of convergence under Hellinger loss if the posterior distribution achieves the optimal rate over certain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2005
ISSN: 0303-6898,1467-9469
DOI: 10.1111/j.1467-9469.2005.00448.x